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Approximate analytical functions for s, p, d, and f orbitals of the second and third-row
transition metals have been constructed from the Herman-Skillman Hartree-Fock-Slater
numerical wave functions. They consist of orthonormal linear combinations of Slater-type
orbital functions, and depend on a weighted least-squares criterion to judge the accuracy of
the fit. The option of using a single-u (one orbital function per extremum) or double-y repre-
sentation for the outermost maximum of a given function is included. Whereas the latter basis
set is more flexible, convergence problems in the fitting method as well as an inherent arbi-
trariness in choosing the fitting criterion result in derived parameters which are not uniquely
determined by the least-squares criterion alone.

By relaxing the orthogonality requirement for orbitals of the same [ and different = it is
shown that the accuracy of the fit can be significantly improved. The importance of a proper
choice for the fitting criterion is discussed.

Die numerischen Hartree-Fock-Slater-Funktionen von Herman-Skillman wurden fiir die
s-, p-,d-und f-Zustinde der Ubergangsmetalle der zweiten und dritten Reihe durch analytische
Funktionen (Linearkombinationen von Slaterfunktionen) angenihert. Die Anniherung an die
vorgegebenen Funktionen wird besser, wenn man die Orthogonalitdtsbedingungen fiir Zusténde
gleicher Nebenquantenzahl fallen 148t.

Par un critére des moindres carrés pesés, les fonctions d’onde numérigues du procédé
Hartree-Fock-Slater de Herman et Skillman pour les orbitales s, p, & et f des métaux de
transition de la deuxiéme et troisiéme période, ont été approximées par des fonctions analyti-
ques, soit de combinaisons linéaires orthonormées de fonctions de Slater. L’option d’employer
une représentation simple-u (une fonction de Slater) ou double-u pour le maximum le plus
éloigné d’une fonction est incluse. Quoique la seconde base soit plus flexible, des problémes de
convergence et un arbitraire inhérent de 1’ajustage résultent en de paramétres non-uniques.
I’ajustage s’améliore sensiblement quand ’orthogonalité des orbitales au méme [ est aban-
donnée. On discute le choix du critére d’ajustage.

Introduction

The investigation of the electronic structures of second and third-row transi-
tion metal complexes hitherto has proceeded mainly along experimental lines. The
few calculations of electronic structure reported in the literature have had to rely
on Slater’s rules [15] or “reasonable estimates’ to obtain the orbital exponents
for the appropriate metal radial functions [3]. Recently, BurNs has published [4]
an improved set of rules for computing orbital exponents; these rules are claimed
to be valid for all the elements in the periodic table. Unfortunately, the BUrNs’
rules are based on published Hartree and Hartree-Fock radial functions, of
which there is only an extremely small sampling for the second and third-row
transition metals.
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With the recent availability of reasonable semi-empirical methods {1, 2] for
caleulating the electronic structures of transition metal complexes, an extensive
tabulation of analytical radial functions for the second and third-row transition
metals is highly desirable. We present here such a tabulation.

Numerical Methods

The atomic functions presented here are analytical approximations to the
numerical Hartree-Fock-Slater (HFS) radial functions computed using the
Fortran program described by HERMAN and SEIrzmax (HS) [7]. A fully automatic
curve-fitting procedure was devised to obtain analytical functions from the
computed numerical functions and attached directly to the slightly modified HS
program. Curve-fitting methods previously described [9, 10, 13, 16] in the litera-
ture were considered unsuitable for use on a computer.

The basis set for an atomic orbital with principal » and azimuthal [ quantum
numbers consists of a normalized linear combination of » — I or n — I + 1 Slater-
type orbital functions. The former basis set has each extremum in the radial
function represented by a single orbital function (“‘single-x”’); the latter basis set
has one orbital function per extremum, except for the outermost maximum where
two Slater-type functions are employed (“double-y”).

The radial part of a Slater-type orbital function is defined as follows:

(2 o) "
R =———a 7P lexp (— . 1
n (tin) [(2n!)]%7 eXp (— tn 1) (1)
The total radial function for a given n and [ is expressed as in (2):
Toi= > Curgr. (2)
k=141
In (2),
@r = Ry (ux) k=141, n single-y
or = Ry (uz) k=1+1,-,n— }d ble. 3)
= Ni [Be (ux) + 26 Be ()] k=n e
n—1
Tn,l = Oqlm Pn + Z 0/,;7(; Tk,l . 4)
k=1+1

The functions of a given ! and different » are orthonormal and the coefficients,
Cni (or Oy;), are completely determined by the orthonormality constraints.

Ty | Trap =04,k (3)
from which follows:

n—1

Ouk = 2 Ch; Cik (7)
i=k

. n—1 i _ 1
Opn =1 — 3 Lo | Tg,0?] * (8)
k=1+1
Cot = —<pn | T, Cps, (9)

L
Nip =L+ 2 + 2 2 By ()| B ()] *
Eqgs. (8) and (9) express the familiar Schmidt orthogonalization procedure.
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In a single-u representation there is only one variable parameter for each
Ty1; the orbital exponent py. In the double-u representation there are three
variable parameters; un, u, and A,. As an example, the orthonormalization
procedure for Pi+(5d°) 3d, 4d, and 54 radial functions will now be described in
detail.

The orbital exponent, ug (see Tab. 5), for the 3d orbital function, uniquely
determines T'3q in the single-u representation (as it always will when » = [ + 1);
Tgq = Cygy Ry (1) with Cyy = Cig = 1.000000. After u, (best) is found by the
procedure outlined below, Eqgs. (6) to (9) are used to find: Cyy = Oy = 1.115290,
O3 = Cy3 = — 0.493835. Then, having obtained optimum values for u;, u;, and
J5 ( = 0.871324), the values N; = 0.633024, C;; = C; = 1.059568, Oy, = 0.349077,
Cyy = — 0.389322, 055 = — 0.028787, and Oy, = 0.143599 are computed. The coeffi -
cients of R (us) and Ry (uf) are given by Cy; = Cf; Ny = 0.670732 and Oy =
Cy5 A5 = 0.584424, respectively. The radial functions are, therefore,

Tsq = 1.000000 Ry(u,)
Tya = 1.115290 R,(u,) — 0.493835 Ry(u;)
Thq = 0.670732 Ry(us) + 0.584424 R,(ul) — 0.389322 R,(u,) -+ 0.143599 Ry(uy) -

The fitting procedure for finding the best uy [un (best)] in the single-u repre-
sentation is based on finding & minimum value of S5 [Sy (min)] in the expression,

Sp = 3 [XP — T2 rt) (11)
t

X and T?, are, respectively, values of the HFS numerical function and the
analytical function at each radial point, ®. The choice of this criterion will be
discussed later.

In the curve-fitting program §, is numerically differentiated at two points,
tin (trial) and wy, (trial) + &, to form ASu/Au, and AS,/Auns. The latter are then
used to extrapolate linearly to dS/du = 0:

4
St = ocg—;: / (i—i — ii) ; tin (best) = py, (trial) + Suy - (12)

If | dun 1> VALUE, a second iteration is tried using the fourth cycle of the
previous iteration as the first cycle of the new iteration. The parameter value
x = 0.05 was found to give very rapid convergence with VALUE = 0.0001. When
\ Stin ] < VALUE the procedure is halted.

The double-y representation is more difficult to handle because the functional
dependence of the radial function on any one of the three parameters (i, u,,, and
An) is very weak and of a complicated nature; . ¢., different combinations of the
three parameters will give essentially the same value of S,. This is not to say that
an absolute minimum does not exist for 8, as a function of yy, py, and 4,, but
rather that either the minimum is extremely shallow or that the function consists
of many closely-spaced minima. This ambiguity rules out linear extrapolation
methods and requires that an additional criterion be used in choosing the specific
set of orbital exponents and coefficients reported here.

The procedure adopted was to fit the parameters one at a time, the other two
being held fixed. The chosen parameter is varied systematically in large steps (0.2)
until a minimum is found in §,. This point, ¥, together with two other points,
one on each side of the minimum, S and S, are used to describe a parabola
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and determine its minimum¥*. As before, if the §, caloulated from BEq. (11) using
tn (best) is not satisfactory, another iteration is started using the calculated S, as
5@,

The parameters are fitted successively in the order, A, 1y, and u,, for a pre-set
number of cycles. Since a criterion other than an absolute minimum value of S,
is used, the iterations are not continued until the change in Sy, is reduced to less
than some predetermined small number, as in the single-u method. This latter
procedure, in fact, was found to be only slowly convergent. In practice, therefore,
the parameters for only one metal in each row are optimized very carefully using
the additional criterion discussed below. The results are then extended to the
other atoms in that row as initial guess values. In this connection, the work of
RicHARDSON et al. [73] on the first-row transition metals is very useful.

After all the orbitals of a given [ are fitted, their orthonormality is tested. The
Ty, reported here were invariably found to be orthonormal to better than
+ 0.000001.

The time estimate given by HS [7] for calculating atomic numerical radial
functions on an IBM 7090 is only slightly increased for calculating and fitting all
the occupied atomic orbitals on an IBM 7094, on which these calculations were
run.

Results

The fitted analytical functions are presented in Tab. 1 — 5. Tab. 6 compares

the Cut (3d1°%) 34 analytical Hartree-Fock function [5] to the numerical HFS [7],

Table 1. Analytical Functions for s Orbitals>

orbital  exponents®

atom % i M ! 4 M

Zr 4 39.581 14.715 7.183 3.635 1.817
Nb 5 40.579 15111 7.409 3.786 1.889
Mo 6 41.577 15.509 7.634 3.934 1.956
Te 7 42.575 15.906 7.860 4.080 2.018
Ru 8 43.573 16.304 8.087 4.223 2.078
Rh 9 44571 16.703 8.313 4.365 2.135
Pd 10 45.569 17.101 8.540 4.506 2.190
Ag 11 46.567 17.500 8.767 4.645 2.244
coefficientse Cs Cpo Cys Cyu Cys

Zr 0.0230 —0.0836 0.2144 —0.4941 1.0930
Nb 0.0235 —0.0856 0.2190 —0.4958 1.0927
Mo 0.0230 —0.0871 0.2221 —0.4946 1.0916
Te 0.0242 —0.0881 0.2240 —0.4917 1.0899
Ru 0.0244 —0.0887 0.2250 —0.4876 1.0879
Rh 0.0245 —0.0892 0.2255 —0.4829 1.0858
Pd 0.0246 —0.0894 0.2254 —0.4774 1.0835
Ag 0.0246 —0.0894 0.2249 —0.4718 1.0812

a Metal charge pf +1; configuration 4d=—3 5st 5p1.
v Single-u representation.
¢ 5s orbital.

* Solution of the resulting simultaneous equations by direct expansion of the appropriate
determinants led to an excessive loss of significant figures and an alternative method had to be
used [11].



Approximate Analytical Orbital Functions for Transition Metals 371

Table 2. Analytical Functions for p and d Orbiialsa

orbital ~exponents p orbitals® d orbitalse
atom  7n A Hs Pa Us Y y i
Zr 4 17.990 8.334 3.955 1.776 8.731 3.835  1.505
Nb 5 18.481 8.611 4.140 1.852 9.068 4.080 1.637
Mo 6 18.973 8.888 4.321 1.921 9.404 4.542  1.901
Te 7 19.465 9.164 4.498 1.984 9.738 4.900 2.094
Ru 8 19.957 9.441 4.673 2.043 10.072 5.378  2.303
Rh 9 20.449 9.718 4.845 2.099 10.404 5.542  2.398
Pd 10 20941 9.994 5.015 2.152 10.735 5983 2.613
Ag 11 21.434 10.271 5.183 2.202 11.065 6.070  2.663
coefficients 5p orbitald 4d orbitale

Cse Css Csa Css Cas Cu Cor
Zr —0.0463 0.1369 —0.3565 1.0522 -—0.2186 0.6357 0.5933
Nb —0.1476 0.1403 —0.3562 1.0516 —0.2382 0.6583 0.5673
Mo —0.0484 0.1422 —0.3530 1.0503 —0.2611 0.6097 0.6097
Te —0.0489 0.1431 —0.3482 1.0486 —0.2790 0.5933 0.6241
Ru —0.0492 0.1432 —0.3423 1.0467 -—0.2986 0.5573 0.6642
Rh —0.0492 01427 —0.3359 1.0447 -—0.3086 0.5823 0.6405
Pd —0.0491 0.1418 —0.3280 1.0427 —0.3246 0.5535 0.6701
Ag —0.0488 0.1405 —0.3218 1.0407 -—0.3308 0.5889 0.6370

a Metal charge of +1.

b Configuration 4d=—3 5st 5pt.
¢ Configuration 4d»—1,

4 Single-u representation.

¢ Double-z representation.

Table 3. Analytical Functions for s Orbitals»

orbital exponentst

atom n # Mo My My ] e

Hi 4 71.537 27.602 14.573 8.209 4.342 2.214
Ta 5 72.536 28.008 14.808 8.357 4.455 2.280
w 6 73.535 28.415 15.043 8.507 4.569 2.341
Re 7 74.535 28.821 15.279 8.657 4.682 2.398
Os 8 75.534 29.228 15.514 8.809 4.795 2.452
Ir 9 76.533 29.634 15.750 8.962 4.907 2.504
Pt 10 77.533 30.041 15.986 9.115 5.019 2.554
Au 11 78.532 30.447 16.220 9.269 5131 2.602
Hg 12 79.531 30.853 16.458 9.424 5.243 2.649
coefficientse Ce1 Cyo Cos Ces Cs Ces

Ht —0.0129 0.0468 —0.1141  0.2245 —0.4681  1.0825
Ta —0.0134 0.0483 —0.1177  0.2318 —0.4764  1.0846
w —0.0137 0.0495 —0.1207  0.2376 —0.4816  1.0857
Rb —0.0140 0.0505 —0.1232  0.2424 —0.4845  1.0860
Os —0.0142 0.0513 —0.1252  0.2462 —0.4858  1.0858
Ir —0.0144 0.0520 —0.1269  0.2494 —0.4859  1.0852
Pt —0.0146 0.0526 —0.1284¢ 0.2521 —0.4851  1.0843
Au —0.0147 0.0531 —0.1296  0.2542 —0.4836  1.0832
Hg —0.0148 0.0535 —0.1307  0.2560 —0.4815  1.0820

s Metal charge of +1; configuration 5073 6s! 6pl.
b Single-y representation.
¢ 6s orbital.
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Table 4. Analytical Functions for p Orbitalse

orbital exponentsb
atom ® e 3 g M5 e
Hf 4 33.805 17.248 9.510 4.766 2.166
Ta 5 34.302 17.527 9.685 4.909 2.241
w 6 34.798 17.806 9.863 5.051 2.309
Re 7 35.204 18.084 10.041 5.191 2.372
Os 8 35.791 18.363 10.221 5.330 2.429
Ir 9 36.287 18.642 10.401 5.467 2.484
Pt 10 36.784 18.921 10.582 5.604 2.535
Au 11 37.280 19.200 10.764 5.739 2.584
Hg 12 37.777 19.479 10.947 5.872 2.631
coefficients® Chs Cgs Cgs Ces Cos
Hf 0.0243 —0.0677 0.1394 —0.3204 1.0417
Ta 0.0254 —0.0708 0.1458 —0.3277 1.0431
W 0.0263 —0.0732 0.1508 —0.3318 1.0438
Re 0.0269 —0.0751 0.1546 —0.3338 1.0439
Os 0.0275 —0.0766 0.1577 —0.3341 1.0436
Ir 0.0279 —0.0778 0.1600 —0.3333 1.0430
Pt 0.0282 —0.0788 0.1618 —0.3317 1.0422
Au 0.0285 —0.0795 0.1631 —0.3293 1.0413
Hg 0.0287 —0.0800 0.1639 —0.3264 1.0403

» Metal charge of +1; configuration 5373 6s! 6pl.

v Single-u representation.

¢ §p orbital.

Table 5. Analytical Functions for d and { Orbitals®
orbital exponents d-orbitals f orbitals
atom n H3 Hy s 5 Hy U
Hf 4 19.279 9.794 4.360 1.709 11.798 5.241
Ta 5 19.604 9.997 4.762 1.938 12.199 5.534
w 6 19.929 10.202 4.982 2.068 12.358 5.673
Re 7 20.2556 10.409 5.343 2.277 12.554 5.840
Os 8 20.580 10.617 5.671 2.416 12.738 5.982
Ir 9 20.905 10.826 5.796 2.557 12.982 6.168
Pt 10 21.230 11.035 6.013 2.696 13.184 6.324
Au 11 21.556 11.246 6.163 2.794 13.347 6.415
Hgp 12 21.881 11.457 6.436 3.032 13.495 6.504
coefficients 5d orbitale 4f orbitale
053 054 055 055’ Cu 044’

Hf 0.0934 —0.2507 0.7145 0.5458 0.5350 0.6239
Ta 0.1052 —0.2844  0.6815 0.5774 0.5273 0.6246
w 0.1139 —0.3077  0.6940 0.5631 0.5474 0.6015
Re 0.1230 —0.3342  0.6662 0.5910 0.5623 0.5826
Os 0.1304 —0.3541  0.6689 0.5877 0.5787 0.5632
Ir 0.1372 —0.3724  0.6698 0.5860 0.5872 0.5509
Pt 0.1436 —0.3893  0.6707 0.5844 0.6003 0.5343
Au 0.1492 —0.4030  0.6851 0.5696 0.6191 0.5140
Hgp 0.1598 —0.4322  0.6905 0.5593 0.6393 0.4915

» Metal charge of +1; configuration 5471
b Configuration 5472 6st.
¢ Double-u representation.
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both for the original functions and for double-u approximations to each. As noted
by Pratr [12], the numerical HSF functions are very close to the analytical
Hartree-Fock ones.

Tinally, different analytical approximations, varying in the accuracy with
which they reproduce the numerical functions, are compared in Tab. 7 for the
Aut (5d° 6s' 6p') 6s function.

Discussion

The HFS numerical functions are approximate solutions to the non-relativistic
Hartree-Fock equations for atomic systems [17]. A detailed account of the approxi-
mations involved and the consequences of invoking these approximations is given
by HS [7] and others [8, 17, 20]. We restrict ourselves, therefore, to a discussion
of the fitting procedure leading to the analytical functions.

Eq. (11) for S, is familiar as the starting point for the usual least squares
regression using the radial distance r® as a weighting factor at each point ¢. The
choice of »® as a weighting factor over [r®7% or a constant factor of unity is a
compromise and introduces an element of arbitrariness into the fitted functions.
It is to be noted that a minimum value of 8, using a constant weighting factor of
unity will not come at the same value for the orbital exponent as a minimum
value of S, using [»®)7]2 as the weighting factor. The former corresponds to fitting
the numerical function, X?, whereas the latter corresponds to fitting P® =
r® X® the radial-charge-distribution function. In fitting the radial function
directly (constant weighting factor of unity), the inner parts of X are faithfully
reproduced at the expense of the “tail”, since the largest contributions to S, come
from those places where X® has its largest amplitude, the innermost parts of the
numerical function. In addition, the radial points chosen for fitting correspond to
every eighth point on a 521 point integration mesh used in calculating X. These
radial points (in atomic units) are not equally spaced; the smaller +® values are
separated by smaller intervals than the larger #®). This results in a larger number
of small radial points over large radial points for any given distance from the
nucleus. Thus, the innermost parts of X% are doubly favored; by the inherent
nature of the radial function, and by the uneven intervals between the radial
points chosen for the fitting procedure.

Alternatively, fitting P9 (weighting factor of [r®]2) results in the reverse
situation; the “tail” of the numerical function is faithfully reproduced while the
inner portions are badly represented. This reflects a deficiency in the size of the
basis set, not in the fitting method.

The compromise solution consists of using Eq. (11) to define the S, used as the
fitting criterion. Although fitting the innermost parts of an orbital would be
desivable for energy considerations [6, 14, 18], since the largest contributions to
the energy of an atom come from those electrons closest to the nucleus, the
immediate uses envisioned for these analytical functions, in semi-empirical molec-
ular orbital calculations, require that they accurately represent the extension of
the radial function at large radial distances. For the purpose it is also important
that the position of the outermost maximum of the radial charge density be
accurately reproduced in the analytical function {79]. This is the additional
criterion used in the double-y representation in choosing among the various sets
of parameters which give approximately the same value of S;,.
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Examination of Tab. 6 and 7 shows that, with the orthogonality restrictions
[Eq. (5)], both the single-u and double-y representations yield analytical funetions
which are not as accurate as might be desired. This is not unexpected in the single-
4 representation, where only one variable parameter is used for each orbital. In
fact, considering the limited size of the basis set, the fit must be considered
remarkably good. The disappointment comes in the double-u representation,
where trebling the number of parameters does not proportionately increase the
accuracy. However, the gross features of the numerical functions are followed

Table 6. Comparison of Hartree-Fock and Hartree-Fock-Slater Functions for the Cut 3d Orbital

rita Xyt Taaltle CreEMENTT? RicuarDSONe
0.0007 0.000 0.000 0.000 0.000
0.0122 0.036 0.023 0.032 0.019
0.0238 0.122 0.081 0.109 0.066
0.0418 0.320 0.224 (.288 0.182
0.0648 0.629 0.467 0.570 0.384
0.0893 0.971 0.764 0.883 0.632
0.1354 1.542 1.325 1.411 1.113
0.1815 1.955 1.801 1.799 1.535
0.2536 2.201 2,277 2130 1.999
0.3458 2.338 2.450 2,204 2.205
0.4438 2146 2.285 2.053 2.123
0.6282 1.612 1.652 1.579 1.623
0.8126 1.146 1.099 1.146 1.130
1.1008 0.672 0.615 0.689 0.653
1.4697 0.356 0.354 0.374 0.373
1.8616 0.193 0.214 0.205 0.221
2.5992 0.071 0.076 0.073 0.077
3.3370 0.028 0.023 0.028 0.023
4.4896 0.007 0.003 0.006 0.003
5.9651 0.001 0.000 0.001 0.000

» Radial points in atomic units.

® HFS numerical function.

¢ Fitted HFS numerical function; 7sa = 0.6267 R, (6.2494) + 0.5566 £, (2.2824).
4 Analytical Hartree-Fock from reference [§].

e Fitted analytical Hartree-Fock (double-u representation) from reference [13].

very closely and certain inaccuracies may cancel each other in calculations of
guantities such as overlap integrals, for example. Thus, the “tails” of the analy-
tical functions presented here usually fall off too steeply at large »®, whereas the
outermost maximum peaks at a slightly larger value of the radial distance for the
fitted analytical function than for the numerical function. In calculating diatomic
overlap integrals, we may expect that these two small deviations will approxi-
mately cancel.

The degree of accuracy of the fitted functions, within the same size basis set,
can be improved by relaxing the orthogonality constraint for functions of the
same ! and different n. Then, for the single-u representation, the 2m — 20 —1
parameters (n — [ orbital exponents and n-—[—1 coefficients) can be derived
iteratively, one by one. This is easily extended to include a double-u representa-
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tion for the outermost maximum. The results, llustrated for the 6s orbital of Au+
in Tab. 7, show that the size of the basis set is the limiting factor in obtaining a
very accurate fit.

If each of the orbitals of a given and different n are fitted separately in this
manner, the derived analytical functions will still be approximately orthogonal
since the numerical functions being fitted are exactly orthogonal. The required
machine time, however, is greatly increased. Considering the approximations
involved in deriving the numerical functions [7, 17], the time and effort required

Table 7. Comparison of Fitted and Numerical Orbital Functions for the Aut 6s Orbital®

p(8)b Xetre Teslt)a Tesltres g Teslt)s e
0.0005 —16.556 —19.478 —18.447 —17.881
0.0088 — 7.773 — 8.227 — 8.064 — 8.019
0.0170 — 2.676 — 2.396 — 2.356 — 2458
0.0299 1.208 1.318 1.438 1.367
0.0464 2.273 2.097 2173 2.202
0.0640 1.572 1.457 1.352 1.420
0.0970 — 0.283 — 0.021 — 0.327 — 0.299
0.1300 — 1.067 — 0.739 — 0.944 — 0.970
0.1816 — 0.700 — 0.726 — 0.606 — 0.649
0.2476 0.260 — 0.108 0.203 0.199
0.3178 0.669 0.363 0.585 0.615
0.4498 0.268 0.413 0.297 0.333
0.5819 — 0.258 0.048 — 0.200 — 0.209
0.7882 — 0.452 — 0.328 — 0.464 — 0.484
1.0523 — 017 — 0.282 — 0.232 — 0.203
1.3329 0.132 — 0.012 0.092 0.149
1.8611 0.334 0.316 0.359 0.349
2.3893 0.296 0.334 0.331 0.278
3.2147 0.169 0.179 0.163 0.164
42711 0.070 0.048 0.040 0.077
5.3935 0.025 0.008 0.007 0.028
7.5064 0.003 0.000 0.000 0.002

& Configuration 5d8 6s! 8pl.

» Radial points in atomic units.

¢ Numerical HFS function.

4 Single-u; orthogonal to 5s, 4s, etc.; from Tab. 3.
e Single-y; no orthogonality constraints.

f Double-u; no orthogonality constraints.

& Limit of accuracy has not been reached.

to improve the fit by optimizing the individual orbital exponents and coefficients
for all the orbitals separately are probably not justified.
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